Artículo |
||||||
Una Aplicación del Método de Monte Carlo en el Análisis de Riesgo de los Proyectos: Su automatización a través de una planilla de cálculo
Resumen .
1.- Introducción El este trabajo se presenta, a través de un caso práctico, la utilización de la planilla electrónica en el análisis de rentabilidad de inversiones bajo riesgo. Específicamente mostraremos como operar el producto Microsoft Excel, para llevar adelante la construcción del método de Monte Carlo aplicado la evaluación de proyectos de inversión. El método de Monte Carlo es una herramienta de investigación y planeamiento; básicamente es una técnica de muestreo artificial, empleada para operar numéricamente sistemas complejos que tengan componentes aleatorios. Gracias a la constante evolución de las microcomputadoras, en lo que se refiere a su capacidad de procesamiento de la información, el método de Monte Carlo es cada ves más frecuentemente utilizado. Esta metodología provee como resultado, incorporada a los modelos financieros, aproximaciones para las distribuciones de probabilidades de los parámetros que están siendo estudiados. Para ello son realizadas diversas simulaciones donde, en cada una de ellas, son generados valores aleatorios para el conjunto de variables de entrada y parámetros del modelo que están sujetos a incertidumbre. Tales valores aleatorios generados siguen distribuciones de probabilidades específicas que deben ser identificadas o estimadas previamente. Vale destacar que el concepto de simulación, adoptado en este trabajo, es el descripto en los estudios de Robert E. Shannon: "Simulación es el proceso de diseñar y desarrollar un modelo computarizado de un sistema o proceso y conducir experimentos con este modelo con el propósito de entender el comportamiento del sistema o evaluar varias estrategias con las cuales se puede operar el sistema" El conjunto de resultados, producidos a lo largo de todas las simulaciones, podrán ser analizados estadísticamente y proveer resultados en términos de probabilidad. Esas informaciones serán útiles en la evaluación de la dispersión total de las apreciaciones del modelo, causado por el efecto combinado de las incertidumbres de los datos de entrada y en al evaluación de las probabilidades de ser violados los padrones de las proyecciones financieras. En lo que se refiere a la computadora, podemos asegurar que ya está comprobada su utilidad para obtener: una visión clara de la variabilidad y el rédito de los proyectos bajo análisis; como por ejemplo, y lo vamos a mostrar en este trabajo, la planilla de cálculo puede emplearse para obtener valiosa información sobre la sensibilidad del posible rendimiento frente a las variaciones de factores determinados, y sobre la probabilidad de obtener diversos niveles de rendimiento. Esta información será fundamental como respaldo de al decisiones gerenciales; no pueden quedar dudas que el conocimiento de la probabilidad de ocurrencia de toda la gama de posibles rendimientos, brinda una cierta seguridad de que la información disponible ha sido empleada con la máxima eficacia. El ejercicio de razonar en base la incertidumbre contribuye a mejorar la habilidad de elegir las inversiones, porque comprender la incertidumbre y el riesgo equivale a comprender el secreto de los negocios, y es la llave para abrir la puerta a la buenas oportunidades. Automatización del Modelo de Monte Carlo De forma simplificada, se puede aplicar el Modelo de Monte Carlo en el Excel de la siguiente forma:
Dependiendo de la política de decisión, el proceso lo podremos aplicar a la tasa interna de retorno o al valor actual neto. Los ejercicios aquí presentados trabajan en base al valor actual neto. Ejercicios Presentaremos dos ejercicios uno para distribuciones discretas y otro para distribuciones continuas. Para distribuciones discretas: Bastaría colocar la distribución discreta basada en la función de probabilidad acumulada (entre 0% y 100%), generar un aleatorio ( por la función =aleatorio()) y , por ejemplo, a través de una función de búsqueda y referencia (buscarv()) identificar el valor correspondiente. Usando una función de buscar y referencia, como buscarv. del Excel, podríamos generar aleatorios y así aseguramos la aleatoriedad de las cantidades obtenidas, y que luego de "n" simulaciones ("n" no debería ser menor a 1.000) , permitiría calcular el promedio y el riesgo de la distribución. Veamos un ejemplo para distribuciones Discretas y uno para Distribuciones Continuas. Distribución Discreta:
Si hacemos mil simulaciones encontraremos que el promedio y el riesgo tienden a estabilizarse próximos a los valores poblacionales anteriormente calculados. Recuerde que para activar la fórmula aleatorio debe presionar la tecla F9.
Para realizar una tabla de estas simulaciones se puede realizar una macro; la cual valla tomando los valores, los lleve a otra hoja ( use el pegado especial para pasar las fórmulas a valores); para esta misma macro debe usar las posiciones relativas para que se vallan incorporando los registros. Plotenado el gráfico de los números de simulaciones con los valores del promedio y el desvío, puede percibirse que próximo a las 200 simulaciones, los valores se tienden a estabilizar.
Distribuciones Continuas: En nuestro modelo de simulación estocástico, existen varias varialbles aleatorias intercatuando. Y estas variables, siguen distribuciones de probabilidad teóricas o empíricas distintas a la distribución uniforme. Por esta razón, para simular este tipo de variables, es necesario contar con un generador de números uniformes y una función que a través de un método específico, transforme estos números en valores de distribución normal. Existen varios procedimientos para lograr este objetivo, en este trabajo se adoptó el siguiente procedimiento especial para generar números al azar que sigan la distribución de probabilidad. Para cada tipo de distribución continua, se puede montar una función
estocástica; en nuestro caso, una distribución normal puede ser expresado
por:
para expresar la distribución acumulada de la distribución normal en forma explícita, utilizamos el teorema del límite central, el cual establece que la suma de n variables aleatorias independientes se aproxima a una distribución normal a medida que n se aproxima a infinito. Que expresado en forma de teorema sería: Si x1,x2,.......xn es una secuencia de n variables aleatorias independientes con E(x)=µi y var (x)= ð2i (ambas finitas) y Y= a1x1+a2x2+.....+anxn, entonces bajo ciertas condiciones generales:
Tiene una distribución normal estándar a medida que n se aproxima a infinito. Si las variables que se están sumando son uniformes en el intervalo (0;1) entonces:
donde R es un número aleatorio. Tiene una distribución normal estándar. Puesto que la normal estándar de una variable aleatoria x distribuida normalmente se obtiene como:
entonces, la simulación de la variable aleatoria x se haría de acuerdo a la siguiente expresión:
Finalmente, utilizando un valor de n=12, la confiabilidad de los
valores simulados es bastante aceptable. Y utilizando un valor de n=12, la
última expresión se simplifica a:
Para hacer esta operación en el Excel, se debe usar la función =aleatorio().
=((((ALEATORIO()+ALEATORIO()+ALEATORIO()+ALEATORIO()+ALEATORIO()+ALEATORIO()+ A continuación se presenta un ejemplo de la utilización del método de Monte Carlo en la planilla de Microsoft Excel. Estos son los datos del Ejercicio:
Luego se comienza a construir el Modelo. Para cada tipo de gaseosa se calcula: El Acumulando de las probabilidades. El promedio y el riesgo. Se aplica la función aleatrorio() y buscarv() Se aplica la función estocástica para determinar la cantidad.
Luego y en función de estos valores se
procede al cálculo del Valor Actual Neto, utilizando la función
predeterminada del Excel VNA; recuerde que la inversión inicial
correspondiente al momento 0, va leteando a esta función.
Una vez que se tiene la estructura para el cálculo del Valor Actual Neto, se puede realizar una macro que valla acumulando los registros de cada valor puntual que correspondan al Valor Actual Neto, a medida que se activa la función aleatoria para cada simulación. Además se puede ir calculando los valores correspondientes del promedio y del desvío, a fin de poder estudiar el comportamiento del modelo.
Se puede construir el Histograma correspondiente a los valores del Valor Actual Neto, para ello se recurre a la opción Histograma localizada en el Análisis del datos, que se encuentra en Herramientas del asistente; utilizando la función de Análisis de datos.
Con los datos de la tabla que se encuentran el promedio y el riesgo del Valor Actual Neto, se construye el gráfico del Promedio y del desvío muestral por número de simulaciones.
Al construir el Histograma se cuenta con la opción de realizar el gráfico automáticamente y además adicionar el porcentaje acumulado. El resultado se muestra en la siguiente imagen. Conclusión. Cuando se parte de un modelo simple, se cuentan con las herramientas necesarias y se posee el suficiente conocimiento como para poder utilizarlas; el administrador tiene en sus manos todos los elementos que se requieren para poder crear buenos Sistemas de Soporte de Decisiones. En este artículo también se deja demostrando, que no se precisan ni grandes recursos, ni grandes equipos de trabajo para llevar adelante un Proyecto Informático.
Bibliografía Adriano Leal Bruni, Rubens Famá, José de Oliveira Siqueira, Análise Do Risco Na Avaliaçao De Projetos De Investimento: Uma Aplicaçao Do Método De Monte Carlo; Caderno de Pesquisas em Administraçao, Sao Paulo, V.1, Nº6,1º Trim./98. Análisis de la rentabilidad de inversiones en la empresa argentina, Federación Argentina de Consejos Profesionales en Ciencias Económicas, Área Administración, Informe Nº 1, Ediciones Macchi, Buenos Aires 1988. Coss Bu, Rauil, Simulación Un enfoque práctico, Editorial Limusa, México 1995 Costa Luiz Guilherme Tinoco Aboim e Azevedo, Marco Correia Lima. Análise Fundamentalista. Rio de Janeiro:FGV/EPGE.1996. David B Hertz, La incertidumbre y el riesgo en la evaluación de proyectos de inversión, Harvard Business Review, enero-febrero 1964, pág. 95. Jorge Luis Narváez, El lado Oscuro de la Estratégia, C&C, Buenos Aires1996 Marcelo Claudio Perissé, Proyecto Informático, Buenos Aires 2001 ISBN: 987-43-2947-5. Marcelo Claudio Perissé, Sistema para el Soporte de Decisiones - Una Metodología para su Desarrollo, Aplicación Tributaria Revista Informate, Noviembre 2000. Seila, Andrew F. y Banks, Jerry; Spreadsheer Risk Analysis Using Simulation, 1990.
Agradecimientos: Ing. Ricardo Luis Marini, su conocimiento y sus pacientes y claras explicaciones me permitieron comprender al problema en toda su magnitud. Download archivos Microsoft Excel 97 Para distribuciones discretas - mmcdiscreta.xls Para distribuciones continuas - montecarlocontinua.xls
|
||||||
Técnica Administrativa,
Buenos Aires http://www.cyta.com.ar - |
Volumen: 01 |
|||||
Recibido el: ; Aprobado el: |